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rancesco De Bonaa, Saša Zelenikaa,b,∗, Mircea Gheorgie Munteanua

University of Udine – DIEGM, Via delle Scienze 208, 33100 Udine, Italy
University of Rijeka – Centre for Micro and Nano Sciences and Technologies & Faculty of Engineering, Vukovarska 58, 51000 Rijeka, Croatia

r t i c l e i n f o

rticle history:
eceived 26 January 2010
eceived in revised form
4 November 2010
ccepted 25 November 2010

a b s t r a c t

Measurements of Young’s modulus of microstructures are frequently based on dynamic tests on
microbeams. The aim of this work is evaluating if the accuracy of these measurements is affected signifi-
cantly by the anticlastic effect. A nonlinear model of cantilever’s dynamic behavior is thus developed and
applied to some characteristic cases. The obtained results show that, even if the introduced nonlinearity
is small enough to allow a modal approach to be still applied, the anticlastic effect has a meaningful
vailable online 1 December 2010
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influence on measurement accuracies as it is evidenced by the dependence of the resonant frequency
on vibration amplitudes. The proposed treatise permits determining the appropriate range of excitation
amplitudes to be used during the experiments and consequently to reduce appreciably the intervals of
uncertainty of the measurements.

© 2010 Elsevier B.V. All rights reserved.

nticlastic effect
odal model

. Introduction

Microcantilevers are widely used nowadays as measurement
evices in a broad range of applications: scanning tunneling and
tomic force microscopes, micro and nano tribology studies, biol-
gy (down to the level of single molecule assay), etc. [1–4].

Material properties of microstructures are also frequently
ssessed by means of tests on microbeams. Static tests are some-
imes performed to correlate the load-to-displacement behavior
ith the elastic modulus of the material [5,6]. More often, dynamic

ests are performed to assess the first bending mode frequency of
he studied structure with the aim of evaluating the elastic modulus
f the material [7–12]. Since frequency measurements are gener-
lly easy to be implemented, the employment of dynamic tests
educes the complexity of the experimental set-up while accuracy
s often improved up to the level of a few percent. If the effects of
ther error sources (geometry, air damping, residual stresses, etc.)
re also considered, the intervals of uncertainty in the evaluation
f Young’s modulus reported in the literature are generally of the

rder of 10%.

In [13] it has recently been proven that, in the case of slen-
er beams loaded statically by a pure couple, due to the so called
nticlastic effect, the flexural behavior of the structure can be sig-
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oi:10.1016/j.sna.2010.11.012
nificantly affected not only by its geometrical characteristics but
also by the entity of the deflections. A slightly deflected microbeam
could thus exhibit a different flexural stiffness with respect to the
same structure undergoing higher loads. It could be reasonable to
assume that the anticlastic phenomenon affects also the dynamic
behavior of a cantilever beam. In this case, however, the boundary
conditions of the approach given in [13] are not respected, since
during each cycle of vibrations the bending moment is not con-
stant but varies along the beam and in time. In the dynamic tests
described in the literature, this effect is not taken into account.
Only in [12] the influence of the anticlastic curvature is considered,
but a static approach is applied. The aim of this work is evaluat-
ing the influence of the anticlastic effect on the accuracy of the
measurements of the material properties of microstructures.

2. Semi-analytical model

The first modal shape of flexural vibrations of a cantilever beam
depicted in Fig. 1 can be described in normalized form as [14]:

q1(�)=
(

1
N2

)
{sin(ˇ1�)− sinh(ˇ1�) − N1[cos(ˇ1�)− cosh(ˇ1�)]} (1)

where � = z/L, with z being the longitudinal coordinate along the
beam of length L, while ˇ1, in the case of a clamped-free beam, is

ˇ1 = 1.875104, and:

N1 = sin ˇ1 + sinh ˇ1

cos ˇ1 + cosh ˇ1
N2 = (sin ˇ1 − sinh ˇ1) − N1(cos ˇ1 − cosh ˇ1)

(2)

dx.doi.org/10.1016/j.sna.2010.11.012
http://www.sciencedirect.com/science/journal/09244247
http://www.elsevier.com/locate/sna
mailto:sasa.zelenika@riteh.hr
dx.doi.org/10.1016/j.sna.2010.11.012
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Fig. 1. Microcantilever structure.

The actual shape of the cantilever is thus:

1(�, t) = �1(t)q1(�) (3)

here �1(t) is the modal coordinate of the first mode. Since in the
onsidered case the eigenfunction expressed by Eq. (1) is normal-
zed in such a way that the maximum value of the displacement is
qual to unity, �1(t) = ȳ(t) i.e. �1(t) is equal to the amplitude of the
isplacement of the microbeam.

To take into account the anticlastic effect, the characteristic
arameter ˛b defined by Angeli et al. [13] is:

b = 4
√

3(1 − �2)
b√
R̄h

(4)

here, referring to Fig. 1, b is the width of the cantilever, h is its
hickness, R̄ is the curvature radius of the cantilever in the deformed
osition and � is the Poisson’s ratio of the beam material.

Since the first modal beam curvature 1/R is the second derivative
f Eq. (1) with respect to �:

1
R(�)

=
(

ˇ2
1

L2N2

)
{− sin(ˇ1�) − sinh(ˇ1�)

− N1[− cos(ˇ1�) − cosh(ˇ1�)]} (5)

bviously, according to Eq. (3), the beam curvature at a certain
nstant of time will be:

1

R̄(�, t)
= �1(t)

R(�)
(6)

t is hence possible to adopt the correction factor ˚ for the flexural
tiffness of the beam as defined in [13]:

= 1
1 − �2

− 2�2

˛b(1 − �2)
F∗(˛b) + �2

2˛b(1 − �2)
f ∗(˛b) (7)

ith

F∗(˛b) = (B∗
1 + B∗

2) sinh
˛b

2
cos

˛b

2
− (B∗

1 − B∗
2) cosh

˛b

2
sin

˛b

2
f ∗(˛b) = 2(B∗2

1 + B∗2

2 )(sinh ˛b + sin ˛b) + (B∗2

1 − B∗2

2 + 2B∗
1B∗

2) cosh
˛b sin ˛b + (B∗2

1 − B∗2

2 − 2B∗
1B∗

2) sinh ˛b cos ˛b + 2(B∗2

1 − B∗2

2 )˛b

(8)

and

∗
1 = B1

�/
√

3(1 − �2)
B∗

2 = B2

�/
√

3(1 − �2)
(9)

B1= �√
3(1 − �2)

sinh(˛b/2) cos(˛b/2) − cosh(˛b/2) sin(˛b/2)
sinh ˛b + sin ˛b

B = �√ sinh(˛b/2) cos(˛b/2) + cosh(˛b/2) sin(˛b/2) (10)

2

3(1 − �2) sinh ˛b + sin ˛b

The theory given in Angeli et al. [13] is based on the assump-
ion that the load applied to the beam induces a constant curvature
long its length. In the case considered in this work (frequency
ators A 165 (2011) 431–438

response of a microcantilever) the curvature varies continuously
along the beam. It seems, therefore, reasonable to extend the
same approach, thus obtaining a stiffness correction factor ˚ that
depends on the position � along the beam and varies also dur-
ing each oscillation cycle, i.e. ˚ = ˚(�, t). What is more, making
the hypothesis that the system is slightly nonlinear, i.e. that the
correction introduced by taking into account the anticlastic effect
influences only slightly the dynamic response of the microbeam,
it seems reasonable that a modal approach can still be used. If
the usual methodology is applied [14], the “instantaneous” modal
stiffness K̄1 of the microbeam can be evaluated as:

K̄1 =
∫ 1

0

bh3E�

12(R(�))2
Ld� (11)

where E is Young’s modulus of the beam material.
It must be noted that, with respect to the linear case, the usual

expression of the modal stiffness is modified by introducing the
correction factor ˚ that is integrated along the whole length of
the beam. Moreover, due to the mentioned small nonlinearity, the
modal stiffness varies during the oscillation cycle, i.e. K̄1 = K̄1(t),
and therefore it has been indicated as “instantaneous”.

The modal stiffness of the linear system K1 is:

K1 =
∫ 1

0

bh3E

12(R(�))2
Ld� (12)

Considering Eqs. (11) and (12) and bearing in mind that the limit
values of the correction factor ˚ are, respectively, 1 and 1/(1 − �2)
[13], it follows that:

K1 ≤ K̄1 ≤ K1

1 − �2
(13)

In fact, depending on the oscillation amplitude, the “instantaneous”
modal stiffness K̄1 could vary slightly between that of a beam-like
structure K1 and that of a plate bent to a cylindrical surface K1/(1 −
v2) [15]. These bound values of flexural stiffness refer, respectively,
to a plane stress and a plane strain structural model.

The well known expression of modal mass can be used:

M̄1 =
∫ 1

0

�bh[q1(�)]2Ld� ≈ 0.25�Lbh (14)

with � designating the density of the cantilever.
As it will be shown below, due to the slight variation of K̄1, the

response of the system is close to that of a linear system. A resonant
frequency, i.e. the frequency at which the normalized frequency
response is maximal, can thus still be expressed as:

ω̄1 =

√
K̄1eq

M̄1
(15)

where K̄1eq is the “equivalent” modal stiffness of the system. Phys-
ically, the latter is a kind of time average of the value of K̄1 that
cannot be determined analytically, but it has to be obtained numer-
ically (or experimentally).

In the case of excitations due to the harmonic motion of the sup-
porting structure y0(t) = Y0 sin(ωt), the response of the cantilever is
obtained by resorting to a reference frame fixed to the constraint
(Fig. 2) [14]. In this case the modal force is given by:

F̄ (t) = aω2Y sin(ωt) (16)
where a, in the case of a beam with uniformly distributed mass, is:

a=
(

�
hbL

N2ˇ1

)
{− cos ˇ1− cosh ˇ1 − N1[sin ˇ1 − sinh ˇ1] + 2} (17)



F. De Bona et al. / Sensors and Actu

t

y

t
r

y

3

f
t
r
f

ω

I
e
s

t
s
o
o
c
fl
i
b

the correction factor ˚ along the beam. Practically, the “equivalent”
modal stiffness K̄1eq is corrected according to the anticlastic effect
model. Obviously, this beam FEM model does not take into account
mode shapes different from that of a beam. The model can thus be
useful in evaluating quickly and accurately the possible discrep-
Fig. 2. Scheme of an equivalent one degree of freedom system.

By indicating with c the damping coefficient, the acceleration of
he modal mass can hence be computed:

¨ (t) = 1

M̄1
(F̄1 − cẏ − K̄1y) (18)

The value of the displacement y is thus obtained by integrating
wice Eq. (18). The displacement of the modal mass in the absolute
eference frame is finally given by:

¯ (t) = y + Y0 sin(ωt) (19)

. Frequency response of the microbeam

The nonlinear beam model described in Section 2 permits the
requency response of the microbeam excited by the motion of
he supporting structure to be evaluated. The computation can be
estricted to a frequency range close to that of the first natural
requency of the linear beam model ω1:

1 =
√

K1

M̄1
= h

2

(
ˇ1

L

)2√
E

3�
(20)

n fact, according to Eq. (13), it is to be expected that the nonlin-
ar frequency response differs only slightly from that of the linear
ystem.

The computational procedure is shown in Fig. 3. For a given exci-
ation amplitude Y0 of the supporting structure, the frequency is
panned in the interval from ω1 − �ω to ω1 + �ω. For each value
f the frequency, the actual shape of the beam in a given instant

f time is obtained from Eq. (3), while the respective beam shape
urvature is evaluated along the beam length using Eq. (6). The
exural stiffness correction factor ˚, due to the anticlastic effect,

s evaluated for each instant of time as function of the � coordinate
y using Eq. (7). The modal stiffness of the beam is then evalu-
ators A 165 (2011) 431–438 433

ated by introducing this correction factor in the integral given by
expression (11). The modal force is hence calculated, allowing the
dynamics of the single degree of freedom equivalent system (Eq.
(18)) to be solved for a certain instant of time. A new value of beam
shape amplitude is thus obtained.

The procedure is repeated in a time loop up to the point when
the steady state condition is reached and the final amplitude ȳss is
obtained. The values of ȳss vs. the vibration frequency are plotted.
The frequency ω̄1, where ȳss = ȳmax (as pointed out previously, ω̄1
can still be considered as the resonance frequency), can hence be
determined. The whole procedure is reiterated for different values
of the excitation amplitude Y0.

4. Numerical verification

As stated previously, the illustrated semi-analytical model is
based on the following simplifying assumptions:

- the nonlinearity of the dynamic behavior of the system is small,
thus allowing the modal approach to be still applied;

- the anticlastic effect is evaluated for a beam of non constant cur-
vature.

A nonlinear finite element method (FEM) model, implemented
by using 8-node shell elements, is used to verify the validity of these
assumptions. Several meshes were tested to optimize the computer
time vs. accuracy ratio. A minimum of 6 finite elements along the
half-width of the cantilever model is thus used, while a reasonable
elements’ aspect ratio implied the determination of the number of
finite elements along the length of the beam. The geometrical non-
linearities included in this shell FEM model to take into account the
anticlastic effect, allow also exploring whether large flexural deflec-
tions can induce a meaningful effect on the dynamic response of the
microbeam. The model was implemented by using the commercial
FEM code Ansys.

A FEM model based on an original 3 node beam element formu-
lation [16] is also developed. The basic idea is that, in each time step
of an oscillatory cycle, the shape of the deformed cantilever is used
to evaluate the corresponding cross-section stiffness modulus, i.e.
Fig. 3. Flow-chart of the computational procedure.
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Fig. 4. Normalized frequency response H vs. ratio ω̄1

ncies between the semi-analytical model, which refers to beam
heory, and the shell FEM model.

In order to calculate the frequency response of the system, in
oth FEM models it would have been necessary to make a very

arge number of simulations for different excitation amplitudes. In
act, a transient simulation until steady state conditions are reached
ould have been required for each combination of amplitude

nd frequency. To reduce the computational effort, an alternative
pproach is proposed in this work. Indeed, the procedures proposed
n the literature to determine the material properties of microcan-
ilevers are generally based on measurements of the values of the
esonance frequency. The evaluation of the normalized frequency
esponse seems therefore of lesser importance. To attain only the
ariation of the free vibration frequency, it is thus sufficient to per-
orm a single transient simulation based on the Newmark method
17,18]. The studied beam is hence deflected by an initial tip load.
he load is then removed and the free oscillations of the structure
re followed in time. By considering subsequent cycles, it is possi-
le to monitor the variation of the frequency of vibrations vs. the
espective oscillation amplitudes.

. Results and discussion

As already pointed out, the evaluation of Young’s modulus very

ften relies on dynamic tests on microstructures. Due to the micro-
abrication processes, these are frequently characterized by a high
idth-to-thickness ratio that, in turn, generally induces to consider

rroneously that the first modal flexural stiffness is necessarily pro-
ortional to the term 1/(1 − �2) (refer in this regard to Eq. (13)), i.e.

Fig. 5. Dependence of the variation of the ratio ω̄1/ω1 on the excitation am
r a 100 �m × 100 �m × 3 �m Au cantilever (� = 0.42).

to the flexural parameter typical of a plate bent to a cylindrical sur-
face. In Section 2, where the nonlinear model introduced in this
work is described, it has been proven that the evaluation of the
modal flexural stiffness cannot rely only on the geometry of the
considered microstructure, but also on its curvature and vibration
amplitude. What is more, an erroneous evaluation of this param-
eter can imply significant errors, since, as shown by Eq. (13), the
“equivalent” modal stiffness K̄1 could vary between that of a beam-
like structure K1 and that of a plate bent to a cylindrical structure
K1/(1 − �2). In the case of materials with a high value of Poisson’s
ratio �, a significant error in the evaluation of the elastic modulus
E could thus be obtained.

Considering then some characteristic cases reported in the lit-
erature, the entity of the errors that could result from a non-correct
evaluation of the anticlastic effect can be quantified. On the other
hand, as stated previously, the proposed semi-analytical model is
based on some simplifying assumptions. It follows that a com-
parison among the results obtained with the proposed theoretical
models has to be carried out first.

5.1. Validation of the used models

In Fig. 4 are shown the results obtained by applying the
semi-analytical approach proposed in this work to the case of

a 100 �m × 100 �m × 3 �m Au cantilever (� = 0.42) considered in
[7]. According to Eq. (20), its first natural frequency is thus
ω1 = 4.4 × 105 rad/s. The cantilever is excited with amplitudes Y0
in the range from 10 nm to 6 mm, while the assumed damping
coefficient is c = 2.5 × 10−6 kg/s corresponding to a damping ratio

plitudes Y0 for a 100 �m × 100 �m × 3 �m Au cantilever (� = 0.42).
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structure with a length-to-width ratio equal to unity. At small exci-
tation amplitudes, the frequency where the normalized response
obtained by employing the shell FEM model is maximal, is therefore
already slightly higher than that obtained by using a beam-based
Fig. 6. Shell FEM results: excitation amplitudes in time (a) and variation of

f 0.02. It can be observed that, for values of excitation amplitudes
ower than or equal to 20 nm, the maximum normalized frequency
esponse H = ȳmax/Y0 occurs for frequencies corresponding to ω1.
n the other hand, for increasing values of excitation amplitudes,

he maximum normalized frequency response raises slightly in
mplitude while the corresponding frequency increases up to the
alue of 1.10ω1 = ω̄1 max. For excitation amplitudes higher than
mm, ω̄1 max remains constant. Obviously, given the length of the
icrocantilever and the obtained normalized frequency responses,

xcitation amplitudes higher than about 1 �m (i.e. up to 0.01L)
o not have any physical sense, but are considered here for the
ole purpose of showing the extremes of the studied behavior, i.e.
he maximal theoretical errors on the values of Young’s modu-
us.

These aspects can be enhanced by representing the dependence
f ω̄1/ω1 vs. the excitation amplitudes obtained by employing
he semi-analytical model on the same cantilever (Fig. 5). It can
hus be observed that in the depicted range of amplitudes, the
ystem behaves as a slightly nonlinear hardening system. The
esults shown in the figure can be explained by considering that,
s thoroughly demonstrated in [13], the flexural stiffness of a
eam changes depending on the characteristic parameter �b. Eq.
4) shows, in fact, that, for a given geometry and material, this
arameter increases for increasing values of the deflection of the
icrobeam. The flexural stiffness of the beam, and hence K̄1, will

hus increase for increasing oscillation amplitudes.
According to Eq. (13), for small vibration amplitudes the

ynamic behavior of the cantilever will therefore be that of a beam-
ike structure. In the case of larger vibration amplitudes, ω̄1 and thus
lso K̄1eq, tend to increase up to the point where the behavior of the
icrostructure will be close to that of a plate bent to a cylindrical

urface [13].
A numerical verification, according to the procedure described

n Section 4, with a structure having the same material and geomet-
ic characteristics as those considered previously in the analytical
alculation, was also carried out. In Fig. 6 is shown the free vibra-
ion behavior obtained via the shell FEM model: in Fig. 6a are given
he amplitudes of the displacements of the microcantilever in time,
hile in Fig. 6b is depicted the variation of the respective oscillation

requency vs. Y0. It can be observed that, for amplitudes of the order
f Y0 = 1 �m, the oscillation frequency is 4.7 × 105 rad/s. For longer
ntervals of time, the tip displacement amplitudes decrease log-
rithmically, while concurrently the frequency decreases and, for
isplacement amplitudes smaller than 10 nm, stabilizes at about

.6 × 105 rad/s.

A comparison of the results obtained by employing the semi-
nalytical model proposed in this work with those obtained by
sing the shell FEM model is given in Fig. 7. In order to clarify bet-
tio ω̄1/ω1 vs. Y0 (b) for a 100 �m × 100 �m × 3 �m Au cantilever (� = 0.42).

ter the obtained results, in the same figure are presented also the
results obtained via the beam FEM model.

Two geometries were considered: a gold 100 �m long
microbeam studied in [7] and a 1600 �m long silicon nitride
microbeam analyzed in [9]. In the following these two microstruc-
tures will be referred to as “stubby” and “slender” beams,
respectively. The “stubby” beam is characterized by a length-to-
width ratio equal to 1 and a width-to-thickness ratio larger than
30. As it will be discussed below, such a structure can hardly be
described by using a beam model. In the case of the “slender” beam,
the length-to-width ratio is much higher (i.e. it is equal to 16). From
a geometrical point of view, the two considered cases represent, in
fact, the upper and lower extremes among the experimental cases
reported in the literature and referred to in the following section
of the present study.

As it can then be appreciated in Fig. 7, in the case of the “stubby
beam” subjected to small excitation amplitudes, a significant dif-
ference between the semi-analytical model (as well as the beam
FEM model) on the one hand, and the shell FEM model on the
other, is observed. This behavior can probably be justified with geo-
metrical considerations. In fact, with respect to a plate model, a
beam model seems less suited to describe the dynamics of a thin
Fig. 7. Variation of the ratio ω̄/ω1 vs. excitation amplitudes Y0 obtained via the
semi-analytical (full line), the shell (dotted line) and the beam (dashed line)
FEM models for a 100 �m × 100 �m × 3 �m Au cantilever (thicker lines) and a
1600 �m × 100 �m × 0.54 �m silicon nitride (thinner lines) cantilever.
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Table 1
Characteristic parameters of microcantilevers considered in the literature and respective uncertainties � in the evaluation of E.

Ref. L (�m) b (�m) h (�m) Material E (GPa) � Y0min (nm) Y0max (�m) �t (%) �beam (%) �shell (%)

[7] 100 100 3 Gold 40 0.42 20 1 16.5 16.4 5.0
[7] 1000 100 3 Gold 40 0.42 2000 10 3.4 4.3 4.4
[9] 100 100 0.54 LPCVD SixNy 95 0.23 3 1 4.9 5.0 4.2
[9] 1600 100 0.54 LPCVD Si N 95 0.23 250 15 3.3 3.8 3.9

0.3
0.3
0.3

a
t
a
s

s
a

b
o
h
f
n
l
a

5
Y

o
r
d
c
E
u
m
a
u
s
m
t
e
e

s
w
w
t
m
t
t
i
p
t
p
i
w
h
Y
c
m
q
1
i

x y

[10] 230 40 7 Nickel 170
[8] 380 100 10 Nickel 185
[8] 1200 100 10 Nickel 185

pproach (semi-analytical and beam FEM). By increasing the exci-
ation amplitudes, all the models show a similar behavior so that,
lready for an excitation amplitude equal to 0.002L, they give very
imilar results.

In the “slender beam” case, the behavior is similar for both the
emi-analytical and the numerical models, suggesting that a beam
pproach is correct.

It is, therefore, possible to conclude that, in the case of “slender
eams” the semi-analytical model gives reliable results. The case
f microstructures with a smaller length-to-width ratio should,
owever, be avoided unless a thorough numerical analysis is per-

ormed. In fact, in the case of small excitation amplitudes, their first
atural frequency could differ from that obtained by using a beam-

ike model, thus limiting the accuracy achievable with a simplified
pproach.

.2. Uncertainties of experimental data in the evaluation of
oung’s moduli

In Table 1 are summarized the uncertainties in the evaluation
f Young’s moduli, which could result in the case of measurements
eported in the literature by using a flexural stiffness model that
oes not take into account the anticlastic effect. In the last three
olumns are reported the relative uncertainties in the evaluation of
with respect to a beam in plane stress. �t represents the maximal
ncertainty obtained by employing the proposed semi-analytical
odel with a physically feasible excitation amplitude Y0 max. �beam

nd �shell are the uncertainty values obtained, respectively, by
sing the beam and the shell FEM model. Depending on the
tructural model adopted for the considered case, the maximal
easurement error could be even bigger than the reported uncer-

ainty levels. The reported Y0 min values represent the minimal
xcitation amplitudes where the hardening due to the anticlastic
ffect becomes noticeable.

In [7] the case of gold microcantilevers (� = 0.42), having dimen-
ions in the ranges h = 3–4 �m, b = 100 �m and L = 100–1000 �m,
as considered. The evaluation of the value of Young’s modulus E
as performed by measuring the first resonance frequency. Given

he high width-to-thickness ratio, a plane strain hypothesis was
ade and thus the term E was substituted with E/(1 − �2). However,

he values of the vibration amplitudes were not reported although
hese, as it will be shown below, determine whether the behav-
or of the microcantilever will approach that of a beam, that of a
late bent to a cylindrical surface or an intermediate value between
hese two extremes. Considering Fig. 5, it is thus evident that the
lane strain hypothesis made in [7] is not realistic, since for phys-

cally achievable excitation amplitudes the considered structure
ill never reach the upper extreme of the curve. The plane strain
ypothesis will thus always give rise to estimates of the values of
oung’s modulus higher than the real ones. Given the fact that the

hange in the “equivalent” modal stiffness K̄1eq, and thus of Young’s
odulus, is proportional to the square of the change of the fre-

uency at which the normalized frequency response is maximal, a
0% variation of ω̄1 corresponds to a maximal uncertainty �t = 21%

n the determination of E. Limiting, however, the range of excita-
250 2 0.6 0.2 0.3
350 4 1.5 1.6 1.2

3000 12 0.4 0.2 0.3

tion amplitudes to maximal values of up to 1 �m (corresponding to
a maximal tip displacement of roughly 40 �m), the maximal varia-
tion of ω̄1 will be 8%, corresponding still to a maximal uncertainty
in the evaluation of Young’s modulus �t = 16.5%.

The uncertainty obtained with the shell FEM model �shell is sig-
nificantly lower than �t (see Table 1). This seems related to the
difference of the modal behavior of the structure with respect to
that of a beam-like structure. As shown above, a direct consequence
of this is also the shift of the free vibration frequency from ω1 to
1.045ω1. Such geometries can, therefore, induce an error in the esti-
mation of Young’s modulus of the considered material and thus
have to be avoided unless an accurate numerical analysis is per-
formed beforehand to evaluate the lower limit of the excitation
range where the semi-analytical approach is valid.

When the case of longer microcantilevers
(1000 �m × 100 �m × 3 �m) considered in [7] is taken into
account, the structure behaves as a beam in a broad range of
excitation amplitudes, i.e. up to 2 �m. In this case the maximum
uncertainty in the determination of E is therefore significantly
lower and both the beam and the shell FEM models produce results
comparable to those of the semi-analytical model (Table 1 – see
also the above discussion relative to Fig. 7).

Concerning the other cases reported in the literature, the respec-
tive results in terms of the uncertainty on the values of Young’s
modulus, i.e. on the flexural stiffness, are reported in Table 1.

In [9] a study of the behavior of silicon nitride (� = 0.23) can-
tilevers is performed making the plane stress assumption, i.e.
supposing that flexural stiffness is proportional to E. In this case
the authors estimate the measurement uncertainty in the deter-
mination of Young’s modulus of up to 11%. The influence of the
anticlastic effect was not considered even if, according to the data
reported in Table 1, it could give rise to an additional uncertainty of
up to 5%. As already noted previously, if longer cantilevers are used,
the relative influence of this effect decreases. In this case both FEM
models are in good agreement with the semi-analytical one. Even
for the geometry characterized by a length-to-width ratio equal
to one, the geometrical and mechanical characteristics of the used
microbeam are such that the dynamics of the structure practically
coincides with that obtained via the beam modal model.

In [10] a dynamic approach was used to assess Young’s modu-
lus of an electroplated nickel microstructure. Its resonant frequency
was measured by the tapping mode of an atomic force microscope
(AFM). To correlate the measured frequency with the materials
property, a laminar composite beam theory was used where, due
to the relatively wide beam with respect to its thickness, E/(1 − �2)
was employed. This was done again regardless of the entity of exci-
tation amplitudes. A measurement error in the determined value
of E was estimated to be 4.1%. Considering the results presented
in Table 1, it is evident that in this case the error induced by the
anticlastic effect has a limited significance.
In [8] Young’s modulus of acoustically actuated electroplated
nickel microcantilevers of different lengths, deposited on various
substrates with different deposition current densities, was deter-
mined. The assumption used to calculate the Young’s modulus
from the resonant frequency measured via a laser vibrometer, was
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he plane stress one. Values reported in Table 1 confirm that this
pproach can be considered appropriate, as it can give rise to uncer-
ainties limited to about 1.5%.

Given the results reported above, it can be concluded that,
lthough due to technological reasons the width-to-thickness ratio
f microcantilevers used in the literature to assess Young’s modulus
f the respective materials is rather large, the adopted correlation
etween Young’s modulus and flexural stiffness seems quite arbi-
rary. In fact, in some of the cited literature [8,9] the expression
or the flexural stiffness is obtained assuming a plane stress behav-
or, while in other [7,10] the plane strain hypothesis is made. On
he other hand, the values reported in Table 1 allow evidencing
hat the model to be adopted depends on the range of excitation
mplitudes. A non negligible error can therefore be made in the
stimation of Young’s modulus if the oscillation amplitudes and
he resulting transition from plane stress to plane strain is not taken
nto account or eventually when the length-to-width ratio, i.e. the
ifference in the modal shape from that of a beam-like model, is
ot considered. In particular, Table 1 shows the upper and lower
xcitation amplitude bounds where the modal stiffness is that of a
eam-like structure or, alternatively, of a plate bent to a cylindrical
urface. The upper bound value is, however, generally limited by
he condition of having maximum tip displacements significantly
maller than the length of the beam. On the other hand, as evi-
enced by the shell FEM results, some geometrical configurations
ould induce slight differences in modal shapes, thus influencing
gain the equivalent stiffness of the considered structure.

It is to be noted here that a rough estimate of the limiting values
f excitation amplitudes can be obtained considering that, in a first
pproximation, the normalized frequency response is:

= 1
2	

(21)

here 	 is the damping ratio. On the other hand, the displace-
ent of the modal mass in the absolute reference frame can be

pproximated as:

¯ = 2h

3

(
L

b

)2 (˛b)2√
3(1 − �2)

(22)

his expression was obtained considering the deflection of the
eam in the middle of its length. The usual Euler–Bernoulli beam
odel was applied here and consequently the curvature of the

eam was taken as directly proportional to ȳ and inversely pro-
ortional to L2. Finally, Eq. (4) had to be used since it correlates
he curvature and the geometry of the beam to the characteristic
arameter ˛b.

In the case of a beam loaded statically by a pure couple, in [13] it
as shown that the cantilever will certainly be in the plane stress

beam-like) state for ˛b ≤ 0.1 and in plane strain (plate bent to a
ylindrical surface) state for ˛b ≥ 100. Eq. (22) allows then deter-
ining ȳ and thus, via the normalized frequency response of Eq.

21), a rough estimate of the extreme values of Y0 can be obtained.
When the beam modal model is not applicable, a thorough shell

onlinear FEM analysis has to be performed before planning the
xperimental assessment of the mechanical properties of the struc-
ure.

. Conclusions

In the case of dynamic tests performed on microcantilevers with

he aim of determining the respective material properties, the hard-
ning behavior due to the anticlastic effect has to be considered. In
his work a mathematical model is proposed to evaluate the influ-
nce of this effect on the dynamics of the cantilever beam. The
odel is validated via a numerical approach. It is thus applied to
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some characteristic cases reported in the literature. The obtained
results allow establishing that, even if the behavior of the system
remains qualitatively similar to the linear modal model, a slight
dependence of the “resonance frequency” on vibration amplitudes
is present. This nonlinear phenomenon can give rise to significant
errors in the evaluation of the stiffness and thus of microstructures’
Young’s moduli. In the considered cases, it has been shown that this
error can have the same order of magnitude as the measurement
errors.

The proposed model can therefore be a suitable tool to chose the
right experimental set-up and excitation conditions in the dynamic
tests. In a first instance, a trial value of Young’s modulus E can thus
be introduced in Eq. (20) and, according to the procedure given in
Fig. 3, a dependence of the type shown in Fig. 5 is obtained for the
structure under consideration. This allows establishing the excita-
tion amplitude range to be used in the subsequent experimental
tests. During the tests, the excitation amplitudes will then be cho-
sen so that the value of the equivalent stiffness K̄1eq will either be
equal to that of a beam-like structure or that of a plate bent to
a cylindrical surface. The value of Young’s modulus can hence be
directly evaluated from Eq. (15).

On the other hand, the obtained results show that, when the
geometry of the specimen under consideration is significantly
different from that of a slender beam, the proposed semi-analytical
beam model might not allow the real behavior of the structure to
be accurately predicted. This is due to the fact that the dynamics of
the structure could slightly differ from that of a beam. In this case,
especially at very small excitation amplitudes, a significant uncer-
tainty could be obtained. For increasing excitation amplitudes,
the hardening effect induced by the anticlastic effect seems to
dominate and the error becomes negligible. The beam FEM model
proposed in this work, based on a nonlinear beam formulation
where the stiffness term is corrected according to the theory
proposed in [13], can in that case be helpful in achieving a better
interpretation of the results.
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Saša Zelenika received M.Sc. degree at the University of Rijeka, Croatia and the D.Sc.
degree at the Polytechnic University of Turin, Italy. After an R&D career in industry,
he was Head of Mechanical Engineering at the Paul Scherrer Institute in Switzerland
(1998–2005). From 2004 he is faculty member of the University of Rijeka. Currently
he is a full professor and Head of the Centre for Micro and Nano Sciences and Tech-
nologies. His research interests encompass precision engineering and microsystems
technologies. He took active part in scientific projects and has authored more than
80 scientific publications and 1 patent.

Mircea Gh. Munteanu received M.Sc. (1968) and D.Sc. (1978) degrees in Applied
Mechanics from the Transilvania University of Brasov, Romania. He worked ten years
at the aeronautical factory IAR Brasov. From 1979 to 2006 he was professor at the

Transilvania University of Brasov, Romania. Since December 2006 he is full pro-
fessor of Applied Mechanics at the University of Udine, Italy. His research activity
includes computational mechanics for biomedical, aerospace, microfabrication and
microsystems applications using particularly numerical methods. He took active
part of international and national scientific projects and is an author of more than
100 scientific publications and several textbooks.


	Mechanical properties of microcantilevers: Influence of the anticlastic effect
	Introduction
	Semi-analytical model
	Frequency response of the microbeam
	Numerical verification
	Results and discussion
	Validation of the used models
	Uncertainties of experimental data in the evaluation of Young's moduli

	Conclusions
	Acknowledgements
	References
	Biographies


