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Abstract 
 Ball-groove contact problems are often encountered in machine design. The analytical 
modeling of the resulting stress-strain behavior is however difficult, as it implies the necessity to 
deal with the non-linear Hertzian theory of point contacts. This work addresses the limits of 
applicability of the available analytical approaches for the calculation of ball-V groove couplings 
employed in ultra-high precision positioning. The analytical results are validated experimentally 
via high-precision measurements. 
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1. Introduction 
 

In the mechanical design of machine elements based on rolling members (e.g. ball bearings, 
ball screws, …) designers are confronted with the need to consider the behavior of ball-groove 
contacts, which is difficult to calculate both analytically and numerically. The analysis implies, in 
fact, the necessity to consider the non-linear Hertz theory of point contacts between elastically 
deforming solids [1]. In literature, various approaches can be traced which deal with such a 
problem. The exact model based on the theory of elasticity is complex since it involves an iterative 
evaluation of elliptic integrals [2]. Other approaches are based on approximated methods making 
use of diagrams [3, 4], polynomial approximations [5] or interpolating procedures [3, 6, 7] for the 
calculation of the stress-strain behavior of the bodies in contact as function of the mechanical 
characteristics and main dimensions of the ball-groove coupling. In high-precision positioning 
applications, because of the required accuracies in the micrometric and sub-micrometric range, the 
establishment of the limits of applicability of these approaches is essential. 
 

    
 

     Fig. 1: Ball in a V groove     Fig. 2: Kinematic coupling 
 

This work addresses the comparison of the available analytical approaches in the case of a 
ball-V groove coupling (Fig. 1). The studied configuration is often used in kinematic coupling 
systems (Fig. 2) employed in ultra-high precision positioning and relocation of opto-mechanical 
components, in metrology, in scientific apparatuses, by the assembly of micro-parts, in high-
precision manufacturing systems and machine tools. 

The analytical results obtained for the studied case are then validated experimentally by 



employing high-precision measurements. These allow the influence of the various mechanical 
parameters on the behavior of the ball-V groove contact pairs to be established. 
 
2. Analytical Models 
 

Hertz theory describes the non-linear 
stress-strain behavior of point contacts between 
elastically deforming isotropic solids loaded 
perpendicular to the surface (shear stress, i.e. 
friction, is neglected), in which the dimension of 
the contact area is small compared to the radii of 
curvature and the dimensions of the involved 
bodies [1-3, 5]. The corresponding exact 
analytical model entails a lengthy iterative 
evaluation of transcendental equations involving 
elliptic integrals (Fig. 3). In fact, by indicating 
with E1, ν1, E2, and ν2 the Young’s moduli and 
the Poisson’s ratios of the bodies in contact, 
with F the normal contact load, with Rb the ball 
radius (Rb=Rb min=Rb max) and with Rg min the 
groove radius (Rg max=∞), the following notation 
can be introduced [2]:              Fig. 3: Exact analytical model 

− equivalent Young modulus: 
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− ratio of the major and minor semi-axes lengths of the elliptical contact area: 
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The resulting calculation algorithm is then arranged as shown on Fig. 3, where 
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are the characteristic parameters, while 
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are the complete elliptic integrals of the first and second kind calculated, as suggested in [8], by 
employing the arithmetic-geometric mean method. 

The results of the algorithm represent the major (c) and minor (d) semi-axes of the elliptical 
contact area, the interpenetration distance δ of the bodies and the maximum contact stress qmax: 
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The approximated methods given in literature in which the need to calculate the elliptic 
integrals is obviated by introducing polynomial [5], tabular [3, 6, 7] or graphical [3, 4] 
representations of the characteristic parameters are summarized in Table 1 (a is the radius of the 
circular contact area, α, β, γ, and λ are the characteristic parameters, cosθ is dependent on the radii 
of curvature and φ - the angle between the planes of principal curvature; the other parameters are 
analogous to those given above). 
 

Table 1: Approximated analytical methods 
 pol. approx. [5] interp. [6] interp. [7] diagrams [4] diagrams [3] gap-bending [5]
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    (a)         (b)    (c) 
 

Fig. 4: Ratio of the semi-axes lengths of the elliptical contact area (a), normalized contact stresses (b) 
and normalized interpenetration distances (c) versus the ratio of the radii of curvature M 

 

The analytical results of the ball-V groove contact behavior obtained with the exact approach 
are compared in Fig. 4 with the approximated analytical methods. For clarity reasons, the results 
are given as differences of each of the considered method with respect to the exact solution. It can 
be observed that the gap-bending hypothesis [5], in which the contact between two curved surfaces 
is reduced to that of a plane and an equivalent sphere, introduces considerable errors. It is worth 
noticing, however, that this hypothesis yields conservative results, i.e. the calculated stresses and 
strains are higher than in reality. 

The errors introduced by the approximated methods based on polynomial, tabular and 
graphical representations are always smaller than ±2% (or even, for the methods given in [6, 7], 
smaller than ±0.2% - Fig. 4). Given the small entity of the stresses and strains involved in most 
high-precision applications, in absolute terms these errors are negligible in all but those cases in 
which true nanometric accuracies are sought. Only in the case when the mentioned characteristic 
parameters approach their limit values (respectively 0 and ∞), which physically corresponds to the 



curvature of the groove approaching that of the ball, the errors involved in the approximated 
methods become appreciable. In this case, however, the basic assumptions of the Hertzian model 
do not hold any more, and the Hertz theory itself starts to break down [5]. 
 
3. Experimental Assessment 
 

In high-precision applications the repeatability of the couplings has to be addressed [5]. The 
considered analytical approaches cannot, however, take into account the extent of non-repeatability 
caused by friction, as this effect can be evaluated only with elaborated numerical formulations 
based on incremental variational inequalities [9]. Even in that case, however, the extent of variation 
due to the stochastic nature of friction is not taken into account. Moreover, since the magnitude of 
the deflections is often in the sub-micron range, surface finish plays an important role. In fact, real 
solids make contact only where the asperities on the two surfaces come together, and Hertzian 
analysis is thus merely the limit case to which real contacts tend [10]. Other effects (e.g. load 
asymmetry) also affect repeatability. 

In order to examine thus the repeatability and, as the most important feature in high-
precision applications, the interpenetration distance of the ball-V groove contacts, an experimental 
set-up was built (Fig. 5). Gothic-arch shaped grooves (Rg min=12mm÷∞) with polished contact 
surfaces (Ra=100nm) are built as modular inserts and epoxied onto the lower plate. In order to 
make the compliance of balls’ fixation low compared to that of the coupling, the balls (Rb=5.5÷10 
mm, Ra=20÷60nm) are inserted into conical seats in the upper plate, burnished until the surface is 
brinelled, and then epoxied [5]. The set-up is thermally isolated (a stability of ±0.1°C was reached). 
Stainless steel grooves and balls of various hardness (HRC 34÷67) are used. To minimize fretting 
corrosion, friction, as well as the footprint (i.e. to approach as much as possible true point contacts) 
[5], ceramic (tungsten carbide (WC) and silicon nitride (Si3N4)) grooves and balls are also 
employed. The loads are applied to the coupling via a pneumatic piston, and their magnitudes are 
measured with a precision (±0.25% ES) calibrated load cell. The interpenetration distance is 
measured with linear absolute encoders (HEIDENHAIN type CT 6002, resolution: 5nm, accuracy: 
±100nm). Two encoders are used to have control of the symmetry of the behavior. 
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ments (25 cycle averages with 100 points in each cycle) and the 
ulated by using the exact analytical model are shown in Fig. 6. 
 ±10% of the measured values) is mainly due to dimensional 
nents, the residual compliance (e.g. epoxied connections) and 

roperties of the used materials (cf. [6]). Despite the care devoted 
pparatus, this uncertainty is hence much larger than the errors 
red approximated analytical methods. The obtained results can 

he theoretical values of the interpenetration distance are within 



the intervals of uncertainty of the measurements, regardless of the used materials. 
• For small loads the measured values are smaller than the theoretical ones, which could be 

due to surface roughness and the resulting flattening of the contact points (“micro-
approaching” [2]). This is supported also by the observed brinelling of contact surfaces (Fig. 
7). Previous studies have allowed establishing that, because of surface roughness, for light 
loads the peak pressure can be up to 70% smaller and the contact area up to 10 times larger 
than in theory [10]. Moreover, the micro- and nano-hardness and Young’s moduli differ 
from the macroscopic ones and depend on the state of the surface, which can have a 
significant impact on the results in this region, too. 

• For higher loads the experimental results are closer to the theoretical ones, which could be 
due to the lower influence of the surface finish and the residual compliances in this region. 
By using ceramic coupling components, a tendency towards higher measured 
interpenetration distances than those calculated theoretically was observed. This could be 
due to the uncertainty of the mechanical properties of ceramic materials. 

• Although lubrication generally has a small effect (Fig. 6), in some instances it induces a 
lowering of the measured values (≤ 10%). The explanation for this event was not found. 

• After a wear-in period of less than 50 cycles, the repeatability of the couplings is typically in 
the σ ≤ 100 nm range (comparable to the surface finish of the coupling interface). The 
residual non-repeatability could be due not only to surface finish, but also to non-linearities 
such as creeping or pre-sliding displacement. 
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   Fig. 6: Comparison of theoretical and experimental results for             Fig. 7: B
       different materials                

 

A trial was also performed to measure the area of the contact region by o
employing a 3D ZYGO type Newview 5010 scanning white-light interfero
profiler used to characterize the polishing accuracy of optical surfaces (vertica
RMS repeatability: 0.4nm, lateral resolution: 4.72µm). It was hence shown that

��In the elastic domain the results are characterized by low accurac
dispersion. 

 

 

Fig. 8: Interferometric measurement of the contact area in the elastic
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use (all the cited theoretical approaches are valid only in the elastic domain). 
 

 

Fig. 9: Interferometric measurement of the contact area in the plastic domain 
 

��Previous trials to measure the contact area by using contact resistance measurements or 
photo-elasticity have also given results characterized by low accuracy. Perhaps only the 
usage of newly developed pressure sensitive films (cf. www.sensorprod.com) could allow 
the situation in this regard to be improved. 

 
4. Conclusions 
 

Except for the gap–bending hypothesis method, the approximated analytical approaches 
available in literature for the evaluation of the stress-strain behavior of ball-V groove contact 
problems are giving results equivalent to those obtained with the exact analytical model in the 
micrometric and sub-micrometric domain, and are therefore of suitable accuracy for most of the 
practical cases encountered in dimensioning high-precision couplings. 

In the whole range of elastic deformations, the correspondence of the theoretical values of 
the interpenetration distances with the experimental ones is within the intervals of uncertainty of 
the latter, regardless of the used materials and lubrication conditions. These effects seem, in fact, to 
influence the behavior only in the sub-micrometric range. 

The repeatability of the couplings is comparable to the surface finish of the contact interface 
and thus it is in the 100 nm range. 

Despite the high accuracy of the employed measurement technique, the measurements of the 
contact area are characterized by low accuracy and are left to eventual future studies. 
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