
PRECISION AND STABILITY OF MAXWELL-TYPE KINEMATIC MOUNTS 

Saša Zelenika a, Kristina Markovi ć a, Josipa Rubeša a 

a University of Rijeka – Faculty of Engineering & Centre for Micro and Nano Sciences and Technologies, 

Vukovarska 58, 51000 Rijeka, Croatia, sasa.zelenika@riteh.hr 

 

1. Introduction 

Kinematic mounts (KMs) are often used in 
high-precision applications since they are self-
locating and free from backlash, allow sub-
micrometric re-positioning, can accommodate 
differential thermal expansions and their 
behaviour can be represented in closed form 
(Slocum, 1992). Their main drawback is con-
stituted by the high contact stresses that are to 
be analysed via the nonlinear Hertz theory 
(Hertz, 1895). The most common KM design 
configuration is the Maxwell-type KM consti-
tuted by 3 V-grooves on one end (typically the 
support) and 3 balls on the other end of the 
mount (typically the supported piece) so as to 
achieve an exact constraint of all 6 spatial 
degrees of freedom (Figure 1). 

 
 

Figure 1. Maxwell type 3-V groove KM. 

The aim of this work is to analyse the influ-
ence of mechanical parameters on KMs’ 
behaviour and especially on their positioning 
precision and stability. An example of a KM 
used to support a large structure is considered. 

2. Analysis of KM precision and stability 

The analysis of the considered KMs com-
prises force and moment balance equations, 
expressions for the calculation of stresses and 
deflections at the contact points and error mo-
tion calculation. Knowing the external loads 
and the geometry, the loads at each groove-ball 
interface and the respective contact point reac-
tions can be computed from the overall force 
and moment balances. The nonlinear behaviour 

of point contacts between elastic isotropic sol-
ids, where the contact area is small compared to 
the radii of curvature and the dimensions of the 
involved bodies, encompasses then the calcula-
tion of the equivalent Young’s modulus and 
contact radius. The elliptical contact area, the 
interpenetration distances and the contact 
stresses can hence be obtained. 

It was shown that the approximate methods 
of calculation of the characteristic KM pa-
rameters are appropriate for most high-preci-
sion applications (Zelenika, 2004). By per-
forming experimental measurements (Figure 2), 
it is thus proven that in the whole elastic 
deformations range the correspondence of the 
theoretical values with the experimental ones is 
within the intervals of uncertainty of the latter. 
The KMs’ precision is shown to be comparable 
to the surface finish (100nm range). 
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Figure 2. Used experimental set-up. 

The calculated stresses and strains allow 
next, under the assumptions that the change of 
the distances between the KM supports is small, 
to calculate the couplings’ error motions about 
its centroid (Slocum, 1992) –Figure 3. 

3. Design example 

The calculation procedure is hence imple-
mented in structured software algorithms and 
used to assess the characteristics of a KM 
aimed at supporting a large vacuum chamber of 
a particle accelerator facility. The input data 
define the maximal support area diameter of 1 
m and the load to be supported as 5 kN with an 



additional 300 N lateral load. The KM elements 
are chosen having silicon nitride balls and 
tungsten carbide grooves. 
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Figure 3. Top view of KM’s geometry. 

The stress calculations allow establishing 
that, for a certain coupling radius RC and a 
maximal allowable stress qall (Esk; Gimex), 
suitable ball radii are Rb = 18 mm (Figure 4) 
and V-groove arch radii are Rg = -21.6 mm. 
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Figure 4. Dimensioning of the KM elements. 

In terms of KM’s stability, two design 
configurations are considered, i.e. one where 
the normals to the planes containing the contact 
forces are directed towards the centroid of the 
coupling (case A) and the other (case B) where 
the normals bisect the angles between the balls 
(Slocum, 1992). Obviously, the KM will lose 
its stability when one of the contact forces 
becomes negative. The stability conditions 

could thus be determined for different KM 
geometries and lateral load orientations. In 
Figure 5, as an example, are shown the stability 
regions when the lateral load is directed as the 
positive KM x-axis and passes through the KM 
centroid. In could hence be shown that, when 
the length of the KM is extended with respect to 
its width, the configuration of case B is 
generally better from the stability point of view. 
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Figure 5. Stability region of various KM configurations. 

4. Conclusions 

A thorough analysis of the precision and 
stability of Maxwell-type KMs is performed. 
Suitable algorithms are implemented and ap-
plied to a design example, allowing the stability 
regions for different designs to be established. 
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