Micropositioning mechatronics system based on FPGA architecture

Ervin Kamenar and Saša Zelenika

University of Rijeka, Faculty of Engineering and Centre for Micro and Nano Sciences and Technologies, Rijeka, Croatia

About us...

 Faculty of Engineering (<u>riteh.uniri.hr</u>) and Centre for Micro and Nano Sciences and Technologies (<u>www.cmnzt.uniri.hr</u>),

- Precision Engineering Laboratory (precenglab.riteh.uniri.hr):
 - People: Saša Zelenika, David Blažević, Ervin Kamenar
 - Main activities:
 - Ultra-high precision positioning systems and laser interferometric measurements,
 - Energy harvesting systems,
 - Stereomicroscope measurements,
 - Laser Doppler vibrometer measurements.

Content

- Introduction
- Experimental Set-Up
 - Actuator and feedback sensor
 - Mechanical elements
 - Control system
- Control algorithms
- Experiments
- Conclusions
- Future work

Introduction

- Precision positioning systems are often used for manipulation of small structures,
- Other micropositioning applications:
 - Positioning of optical devices
 - Handling and assembly of microsystems
 - Focusing mechanism for telescopes
 - Micro and Nano manipulation
 - Semiconductor industry
 - MEMS devices

Experimental Set-Up (1/2)

mindentation Julu and and and and and 0 60--0 2 Baarrad Braddan af an ar 1995 Brain Bran Brands an Brands an Brands an 1995 Brain Brands an abrands an Brands an 1995 Minimital anticella minutation and anticellar And a stand of the second stands of the second stan

Experimental Set-Up (2/2)

H nahmiburborhunhani Same and and and and and and and 0 -00 hiddle dahahaha usedata in State and State and Antional Antional Antional Antion Willing the state -01 Appropriate and a second second

Actuator and feedback sensor (1/2)

System is driven by DC actuator

- A Linear Variable Differential Transformer (LVDT) is used as a feedback sensor:
 - Static element: central primary winding excited with an AC excitation voltage, located between two symmetrical secondary windings
 - Moving element: cylindrical core made of a Ni-Fe alloy, mechanically connected to the moving stage
 - An AC voltage with an amplitude proportional to the movement on the secondary windings is generated
 - AC voltage is conditioned by the Boxed Inline Conditioning Module (BCIM)

Actuator and feedback sensor (2/2)

Element	Туре	Manufacturer	Parameters
Actuator	M 1724 006 SR DC	Faulhaber	$U_N = 6 V,$ $n_0 = 8600 \text{ rpm},$ $\emptyset = 17$ L = 24 mm
Planetary gearhead (integrated with the actuator)	15A series	Faulhaber	L _g = 17.7 mm i = 19:1
Feedback sensor	LD610-50	Omega	Measuring range: ± 50 mm (100 mm) Output voltage (after BCIM conditioning): -10V to +10V

Mechanical elements (1/2)

- Miniature ball screw is used to obtain linear displacement
- Ball screw is supported by Miniature ball bearings,
- The motor and the ball screw are linked by using a miniature coupling
- Sliding of movable part is obtained using profiled miniature guideways

Mechanical elements (2/2)

Element	Туре	Manufacturer	Parameters
Ball screw	SHS6X2R	SKF	$d_0 = 6 \text{ mm}$ p = 2 mm B = 50 mm $h_p = 94\%$
Ball bearings	618/4	SKF	d = 4 mm D = 9 mm b = 2.5 mm
Coupling	MCGS13-3-3	Misumi	$D_C = 16 \text{ mm}$ inner diameters $d_1 = d_2 = 3 \text{ mm}$ $l_C = 13 \text{ mm}$
Linear guideways	MINIRAIL MN7	Schneeberger	fixed part dimensions: $l_f/w_f/h_f = 85 /7/4.5$ moving part dimensions: $l_m/w_m/h_m = 24.6 / 17/6.5$ mm

Jundanda Andatata and the second Southing the state of the state titita and a second 0 00--0 8 All appropriate and the second second

Control system (1/3)

- National Instruments PXI-1050 chassis, PXI-8196 embedded controller, reconfigurable PXI-7833R FPGA module
 - NI PXI-7833R FPGA → Virtex-II 3M gate FPGA chip, 8 16-bit analog inputs, 8 16-bit analog outputs, 96 digital lines (I/O, counters)

Control system (2/3)

- Control algorithms are programmed in the LabVIEW program environment:
 - Host VI (left) is executed on the host computer (NI PXI-8196) and includes user controls and indicators
 - FPGA VI (right) is executed on the FPGA module (NI PXI-7833R) and consists of the control algorithms.

STOP	
PID parameters	Outputs
Proportional gain	LVDT signal -607
Integral gain	PID Output
Differential gain	
System values	
Motor voltage bin 9834	Wait (mSec)
Desired move y	
2 0	
Move y	PID or Ramp control
	3
Max. ramp error	-0
0	

Control system (3/3)

00

Control algorithms - PID

00

the state of the s

0 00-

-00

and the second of the second s

-40

- 10

-

0

8

Hollynd a fan grywer

10

And a partition of the second

nuluation (in the second secon

antion antion and antion and and and an an

didididididida in the second s

and and and and and a share for the stands of the stands of

$$u(n) = K_P e(n) + K_I \sum_{k=0}^{n} e(k) + K_D [y(n) - y(n-1)]$$

Control algorithms - Ramp

00 mindentation and a little little lunimiana3 1 minutes 0 00--00 ind and and -HIGHE -03 delabelation 4 D 0 0 60 Supervised Strandonted Annualment Finantian Antini Statan Bartan Scott Statan Scott States and States States Truch in the second second and and and and and a standard Second 10 -01 And the state of the second second

Control algorithms - Step response

9000 -

8000 -

7000 -6000 -

5000 -4000-3000-2000-1000-

-396,648

Move [um]

PID:

Experiments (1/4)

 Lasertex LSP 30-3D Michelson-type laser Doppler interferometric system is used to assess positioning accuracy and repeatability

Experiments (2/4)

- A set of point-to-point experiments using both the PID and the ramp control typologies is performed:
 - Micrometric displacements with 100 μm steps
 - Long range displacements with 10 mm steps
 - PID parameters set to: $K_P = 4700$, $K_I = 600$, $K_D = 190$

	PID	Ramp		PID	Ramp
Point no.	Error	Error	Point no.	Error	Error
1	-2.8	-1.2	6	-6.2	-1.8
2	-7.6	-0.8	7	3.9	-0.8
3	-2.5	-1.9	8	-1.1	-1.1
4	-1.1	2.5	9	-6.5	0.4
5	-6.5	3.0	10	-4.6	-1.5

Experiments (3/4)

 When longer travel ranges are implemented, output results in a marked nonlinearity that significantly influences the resulting positioning error

	PID	Ramp		PID	Ramp
Point no.	Error	Error	Point no.	Error	Error
1	37.3	47.4	6	49.4	55.5
2	48.8	50.3	7	46.4	52.7
3	44.5	49.8	8	42.5	48.5
4	40.3	46.6	9	45.1	44.1
5	42.9	46.7	10	46.2	44.6

in the

and and and

Experiments (4/4)

 Repetitive measurements with 1 mm steps in the 0 - 10 mm range are conducted and the linearization function

 $f(x) = 1,006 \cdot x + 7$

is obtained and programmed in the Host VI

• PID parameters are set to: $K_P = 4800$, $K_I = 700$, $K_D = 350$

	PID	Ramp		PID	Ramp
Point no.	Error	Error	Point no.	Error	Error
1	1.1	0.6	6	3.6	3.6
2	0.7	2.4	7	3.2	-0.5
3	2.6	-2.7	8	2.2	0.2
4	-0.6	-2.6	9	-1.7	-1.2
5	2.4	-3.6	10	-1.7	-3.5

Conclusions

- A single-axis micropositioning mechatronics system with PID and ramp control is developed
- A marked nonlinearity, which induces errors of about 50 μm, is observed for 10 mm travel range
- The nonlinear effect, caused mainly by the LVDT, is characterized via interferometric measurements and compensated via system linearization
- In the final configuration, the calculated positioning accuracies and repeatabilities are always within 3 µm

Future work

- More complex control typologies PWM based control
- Usage of other types of feedback sensors optical encoders (linear gauges)
- Final goal: multi-axes micropositioning mechatronics systems based on FPGA architecture

Thank you for your attention!

